
Proceedings of the 5th Small Systems Simulation Symposium 2014, Niš, Serbia, 12th-14th February 2014

129

FPGA Implementation of AES Algorithm
Ana Krkljić, Branko Dokić, and Velibor Škobić

Abstract – This paper deals with FPGA implementation of
Advanced Encryption Standard with the key length 128 bits. The
QuartusII software is used for synthesis and place and route, hile
design was described using hardware description language –
VHDL. while simulation of implemented design was done using
ModelSim simulation software.

Keywords – AES, FPGA.

I. INTRODUCTION

Two basic techniques for encrypting information are:
symmetric encryption (also called secret key encryption)
and asymmetric encryption (also called public key
encryption). Symmetric algorithms are faster, but their
main weakness is key distribution. On the other hand,
asymmetric encryption overcomes key security problem,
but these algorithms are generally slower. Some systems
use asymmetric encryption for secure key exchange
combined with symmetric algorithms for fast data
encryption. One of well-respected symmetric algorithms is
AES (Advanced Encryption Standard), AES is
encryption standard established by the U.S. National
Institute of Standards and Technology (NIST) in 2001,
based on Rijndael algorithm.

The algorithm implemented in this paper is Rijndael,
named after its authors Joan Daemen and Vincent Rijmen,
two Belgian cryptographers. Rijndael is an iterated block
cipher with a variable block length and a variable key
length. The block length and the key length can be
independently specified to 128, 192 or 256 bits [1]. As it
became a standard, called AES (Advanced Encryption
Standard), the block length was fixed to 128 bits, while the
key lengths are as mentioned.

Some papers regarding hardware implementation of
AES are [2], [3], [4] and [5]. Tradeoffs in hardware
implementations of AES are area efficiency and speed.
Throughput achieved in the above mentioned papers is 352
Mbps, 182.86 Mbps, up to 28.4Gbps and 462 Mbps
respectively, for AES with 128-bit key.

II. AES ALGORITHM

This paper considers AES algorithm with the block
length and the key length of 128 bits. Data block is
organized as 4x4 matrix of 16 bytes, considered as a state
on which the following transformations are done:

• SubBytes: a non-linear byte substitution, operating on

each of the state bytes independently.
• ShiftRows: the rows of the state are cyclically shifted

over different offsets. row 0 is not shifted, row 1 is

shifted over 1 byte, row 2 over 2 bytes and row 3 over
3 bytes.

• MixColumns: columns of the state are multiplied by a
predefined matrix of constants.

• AddRoundKey: XOR operation on the round key and
the result of the previous transformations

Described transformations are applied to the plaintext in
11 iterations, also called rounds. As depicted by Figure 1,
initial round include only AddRoundKey, which means that
plaintext is bitwise XORed to the initial round key.
Following 9 rounds include all described transformations,
while in the last round MixColumn is skipped.

Fig. 1. AES algorithm iterations

The round key is obtained through key expansion,
described by following recursive formula:

KeyExpansion(byte Key[16] word[44])
{
for (i=0; i<4; i++)
 W[i]=(Key[4*i], Key[4*i+1], Key[4*i+2], Key[4*i+3]);
 for(i=4; i<43; i++)
 { temp=W[i-1];
 if(i%4==0)
 temp=SubByte(RotByte(temp) xor Rcon(i/4));
W[i]=W[i-4] xor temp;
} }
More detailed explanation of the formula is given in [1].
Key expansion makes an array of 44 columns representing
11 round keys (4 columns for each round key), for initial
round as well as 10 following rounds.

III. IMPLEMENTATION

Listed transformation were implemented as separate

hardware entities and then connected together as depicted

Proceedings of the 5th Small Systems Simulation Symposium 2014, Niš, Serbia, 12th-14th February 2014

130

by Figure 3.1. The SubBytes transformation was
implemented as a look up table, hence it occupies a lot of
logic resources, but provides fast encryption. Control logic
module is based in a counter modulo 11, which generates a
round number. That number is used in RKG module to
obtain the round key. RKG means RoundKeyGeneration,
which does the key expansion and returns the round key at
the output. Control logic also provides appropriate
connection between transformation modules. Thus in initial
round, SubBytes, Shiftrows and MixColumns are skipped
and plaintext is connected to ARK module
(AddRoundKey transformation). In final round
MixColumn is skipped while in the other rounds all
modules are used. MEM block is used to store the value
calculated in each round in order to be passed to the
SubBytes input in the next round. Output of the MEM
block is connected to output bus ciphertext only in the final
round. In round 11 system does not encrypt any data, it
only waits for new data to be ready at the input bus,
plaintext. When new data is ready at the input bus, the
signal at the ready input of control logic module is
asserted. This allows synchronization with previous
module that provide a 128-bit data

block.
Fig. 2. Block diagram of AES encryption system

IV. SIMULATION AND TESTING

Logic verification of the design and simulation results

were obtained using ModelSim simulation software. Firstly
the encryption module and the decryption module were
simulated separately, using test vectors provided by NIST.
These vectors, given in [1] in appendix D, are following:

Plaintext: 3243 F6A8 885A 308D 3131 98A2 E037 0734
Key: 2B7E 1516 28AE D2A6 ABF7 1588 09CF 4F3C
Ciphertext:3925 841D 02DC 09FB DC11 8597 196A OB32

Fig. 3. The vectors provided by NIST

In this simulation, the key was fixed, without loss of

generality. It is written in code, in RoundKeyGeneration as
well as INVRoundKeyGeneration entity, rather than
making it an input singnal. Figure 4 depicts the simulation
of the encryption process. It is seen that, for given plaintext
vector at the input, the ciphertext vector was obtained at the
output. Similarly, the Figure 5 depicts the simulaton of the
decryption process, having the ciphertext vector at the
input and the plaintext at the output of the decryption
module.

Fig. 4. Logic simulation of the encryption module

Fig. 5. Logic simulation of the decryption module

The result depicted by Figure 6 is obtained by

following. Encryption and decryption module were
connected via 128-bit bus and test signal in a sine wave
form is applied to the input of the encryption module. Sine
wave at the output also verifies the correctness of
encryption and decryption.

Fig. 6. Logic simulation of encryption and decryption
Implemented solution was tested on a DE1, Altera’s

development board. The board features Wolfson WM8731
audio CODEC with line-in, line-out and microphone-in
jacks. Sine wave from signal generator is applied to the
mic-in and to the oscilloscope channel 1, while
oscilloscope channel 2 is connected to the line-out of the
board. Input signal is digitized, then encrypted and then
serialized. Serial data is transmitted via general IO pins to

Proceedings of the 5th Small Systems Simulation Symposium 2014, Niš, Serbia, 12th-14th February 2014

131

the decryption module, in this case on the same FPGA
device, as depicted by Figure 7.

Fig. 7. Block diagram of a system tested on the DE1 board

Received serial data is parallelized, decrypted and then

converted into analogue form which is observed at the line-
out jack. Figure 8 depicts, both, channel 1 and channel 2 of
the oscilloscope.

Fig. 8. Results obtained using DE1 board, signal generator and
oscilloscope

Implemented system for encryption and decryption

occupies 10 488 logic elements, which is 56% logic
resources of the EP2C20F484C7 device. Maximum
operating frequency estimated by Quartus II is 132.68
MHz. It takes 11 clock cycles for system to generate the
ciphertext, so the encryption throughput is as follows:

Throughput [Mbps] = (data block length[bits]) *

(maximum operating frequency[MHz]) / number of clock
cycles = 128*132.68/11 = 1543 [Mbps]

IV. CONCLUSION

AES encryption/decryption system is implemented on

EP2C20F484C7, device from Cyclone II FPGA series of
Altera. The QuartusII software is used for hardware
description, synthesis and place and route., while
simulation of implemented design was done using
ModelSim simulation software. System is tested on DE1,
Altera’s development board. Implemented solution
occupies 56% logic elements of the EP2C20F484C7
device, meaning encryption as well as decryption system
on the same device. The system encrypts data at 1543
Mbps rate, for the key length 128 bits. Future development
would include an effort to reduce the logic resources
utilization, using, for example, embedded memory blocks.

ACKNOWLEDGEMENT

This paper is result of undergraduate thesis “New
technologies and families of programmable logic devices”,
defended by Ana Krkljić, at Faculty of Electrical
Engineering, University of Banjaluka, december 2013

REFERENCES

[1] Joan Daemen and Vincent Rijmen, The Rijndael Block

Cipher, Retrieved November 01, 2013, from
http://csrc.nist.gov/archive/aes/rijndael/Rijndael-
ammended.pdf

[2] Ghewari, P., Patil, J., Chougule, A., "Efficient
Hardware Design and Implementation of AES
Cryptosystem", International Journal of Engineering
Science and Technology, Vol. 2, 2010, pp. 213-219.

[3] Mali, M., Novak, F., Biasizzo A., "Hardware
Implementation of AES algorithm", Journal of Electrical
Engineering, Vol. 56, No. 9-10, 2005, pp. 265-269.

[4] C.P. Fan J. K. Hwang, “FPGA Implementations of
High Throughput Sequentialand Fully Pileplined AES
Algorithm ”, International Journal of Electrical
Engineering, Vol.15, No.6 PP. 447-455 (2008)

[5] Adib, S., Raissouni, N., "AES Encryption Algorithm
Hardware Implementation: Throughput and Area
Comparasion of 128, 192 and 256 bits KEY",
International Journal of Reconfigurable and Embedded
Systems, Vol. 1, No. 2, July 2012, pp. 67-74.

