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Abstract – This paper deals with FPGA implementation of 
Advanced Encryption Standard with the key length 128 bits. The 
QuartusII software is used for synthesis and place and route, hile 
design was described using hardware description language –
VHDL. while simulation of implemented design was done using 
ModelSim simulation software. 

Keywords – AES, FPGA. 
 

I. INTRODUCTION 
 

Two basic techniques for encrypting information are: 
symmetric encryption (also called secret key encryption) 
and asymmetric encryption (also called public key 
encryption). Symmetric algorithms are faster, but their 
main weakness is key distribution. On the other hand, 
asymmetric encryption overcomes key security problem, 
but these algorithms are generally slower. Some systems 
use asymmetric encryption for secure key exchange 
combined with symmetric algorithms for fast data 
encryption.  One of well-respected symmetric algorithms is 
AES (Advanced Encryption Standard), AES is 
encryption standard  established by the U.S. National 
Institute of Standards and Technology (NIST) in 2001, 
based on Rijndael algorithm. 

The algorithm implemented in this paper is Rijndael, 
named after its authors Joan Daemen and Vincent Rijmen, 
two Belgian cryptographers. Rijndael is an iterated block 
cipher with a variable block length and a variable key 
length. The block length and the key length can be 
independently specified to 128, 192 or 256 bits [1]. As it 
became a standard, called AES ( Advanced Encryption 
Standard), the block length was fixed to 128 bits, while the 
key lengths are as mentioned.  

Some papers regarding hardware implementation of 
AES are [2], [3], [4] and [5]. Tradeoffs in hardware 
implementations of AES are area efficiency and speed.  
Throughput achieved in the above mentioned papers is 352 
Mbps, 182.86 Mbps, up to 28.4Gbps and 462 Mbps 
respectively, for AES with 128-bit key. 
 

II. AES ALGORITHM 
 

This paper considers AES algorithm with the block 
length and the key length of 128 bits. Data block is 
organized as 4x4 matrix of 16 bytes, considered as a state 
on which the following transformations are done: 

 
• SubBytes: a non-linear byte substitution, operating on 

each of the state bytes independently. 
• ShiftRows: the rows of the state are cyclically shifted 

over different offsets. row 0 is not shifted, row 1 is 

shifted over 1 byte, row 2 over 2 bytes and row 3 over 
3 bytes. 

• MixColumns: columns of the state are multiplied by a 
predefined matrix of constants. 

• AddRoundKey: XOR operation on the round key and 
the result of the previous transformations 
 

Described transformations are applied to the plaintext in 
11 iterations, also called rounds. As depicted by Figure 1, 
initial round include only AddRoundKey, which means that 
plaintext is bitwise XORed to the initial round key. 
Following 9 rounds include all described transformations, 
while in the last round  MixColumn is skipped. 

 
Fig. 1.  AES algorithm iterations 

 
The round key is obtained through key expansion, 
described by following recursive formula: 
 
KeyExpansion(byte Key[16] word[44]) 
{ 
for (i=0; i<4; i++) 
   W[i]=(Key[4*i], Key[4*i+1], Key[4*i+2], Key[4*i+3]); 
 for(i=4; i<43; i++) 
  {  temp=W[i-1]; 
      if(i%4==0) 
 temp=SubByte(RotByte(temp) xor Rcon(i/4)); 
W[i]=W[i-4] xor temp; 
} } 
More detailed explanation of the formula is given in [1]. 
Key expansion makes an array of 44 columns representing 
11 round keys (4 columns for each round key), for initial 
round as well as 10 following rounds. 

 
III. IMPLEMENTATION 

 
Listed transformation were implemented as separate  

hardware entities and  then connected together as depicted 
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by Figure 3.1. The SubBytes transformation was 
implemented as a look up table, hence it occupies a lot of 
logic resources, but provides fast encryption. Control logic 
module is based in a counter modulo 11, which generates a 
round number. That number is used in RKG module to 
obtain the round key. RKG means RoundKeyGeneration, 
which does the key expansion and returns the round key at 
the output. Control logic also provides appropriate 
connection between transformation modules. Thus in initial 
round, SubBytes, Shiftrows and MixColumns are skipped 
and  plaintext  is connected to ARK module 
(AddRoundKey transformation). In final round 
MixColumn is skipped while in the other rounds all 
modules are used. MEM block is used to store the value 
calculated in each round in order to be  passed to the 
SubBytes input in the next round. Output of the MEM 
block is connected to output bus ciphertext only in the final 
round. In round 11 system does not encrypt any data, it 
only waits for new data to be ready at the input bus, 
plaintext. When new data is ready at the input bus, the 
signal at the ready input of control logic module is 
asserted. This allows synchronization with previous 
module that provide a 128-bit data 

block.  
Fig. 2.  Block diagram of AES encryption system 

 
IV. SIMULATION AND TESTING 

 
Logic verification of the design and simulation results 

were obtained using ModelSim simulation software. Firstly 
the encryption module and the decryption module were 
simulated separately, using test vectors provided by NIST. 
These vectors, given in [1] in appendix D, are following: 

 
Plaintext: 3243  F6A8 885A 308D 3131 98A2 E037 0734  
Key:       2B7E  1516 28AE D2A6 ABF7 1588 09CF 4F3C 
Ciphertext:3925 841D 02DC 09FB DC11 8597 196A OB32  

 
Fig. 3.  The vectors provided by NIST 

 
In this simulation, the key was fixed, without loss of 

generality. It is written in code, in RoundKeyGeneration as 
well as INVRoundKeyGeneration entity, rather than 
making it an input singnal. Figure 4 depicts the simulation 
of the encryption process. It is seen that, for given plaintext 
vector at the input, the ciphertext vector was obtained at the 
output. Similarly, the Figure 5 depicts the simulaton of the 
decryption process, having the ciphertext vector at the 
input and the plaintext at the output of the decryption 
module. 

 

 
Fig. 4.  Logic simulation of the encryption module 

 

 
Fig. 5.  Logic simulation of the decryption module 

 
The result depicted by Figure 6 is obtained by 

following. Encryption and decryption module were 
connected via 128-bit bus and test signal in a sine wave 
form is applied to the input of the encryption module. Sine 
wave at the output also verifies the correctness of 
encryption and decryption.  

 
Fig. 6.  Logic simulation of encryption and decryption 
Implemented solution was tested on a DE1, Altera’s 

development board. The board features Wolfson WM8731 
audio CODEC with line-in, line-out and microphone-in 
jacks. Sine wave from signal generator is applied to the 
mic-in and to the oscilloscope channel 1, while 
oscilloscope channel 2 is connected to the line-out of the 
board. Input signal is digitized, then encrypted and then 
serialized. Serial data is transmitted via general IO pins to 
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the decryption module, in this case on the same FPGA 
device, as depicted by Figure 7.  

 

 
 
Fig. 7.  Block diagram of a system tested on the DE1 board 
 
Received serial data is parallelized, decrypted and then 

converted into analogue form which is observed at the line-
out jack. Figure 8 depicts, both, channel 1 and channel 2 of 
the oscilloscope. 

 

 
 

Fig. 8.  Results obtained using DE1 board, signal generator and 
oscilloscope 

 
 
 
Implemented system for encryption and decryption 

occupies 10 488 logic elements, which is 56% logic 
resources of the EP2C20F484C7 device. Maximum 
operating frequency estimated by Quartus II is 132.68 
MHz. It takes 11 clock cycles for system to generate the 
ciphertext, so the encryption throughput is as follows: 

 
Throughput [Mbps] = (data block length[bits]) * 

(maximum operating frequency[MHz]) / number of clock 
cycles = 128*132.68/11 = 1543 [Mbps]  

 
IV. CONCLUSION 

 
AES encryption/decryption system is implemented on 

EP2C20F484C7, device from Cyclone II FPGA series of 
Altera. The QuartusII software is used for hardware 
description, synthesis and place and route., while 
simulation of implemented design was done using 
ModelSim simulation software. System is tested on DE1, 
Altera’s development board. Implemented solution 
occupies 56% logic elements of the EP2C20F484C7 
device, meaning encryption as well as decryption system 
on the same device. The system encrypts data at 1543 
Mbps rate, for the key length 128 bits. Future development 
would include an effort to reduce the logic resources 
utilization, using, for example, embedded memory blocks.  
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